ELEMENTS WITH TRIVIAL CENTRALIZER IN WREATH PRODUCTS

BY
WOLFGANG P. KAPPE AND DONALD B. PARKER(1)

Abstract. Groups with self-centralizing elements have been investigated in recent papers by Kappe, Konvisser and Seksenbaev. In particular, if G = A wr B is a wreath product some necessary and some sufficient conditions have been given for the existence of self-centralizing elements and for $G = \langle S_G \rangle$, where S_G is the set of self-centralizing elements. In this paper S_G and the set R_G of elements with trivial centralizer are determined both for restricted and unrestricted wreath products. Based on this the size of $\langle S_G \rangle$ and $\langle R_G \rangle$ is found in some cases, in particular if A and B are p-groups or if B is not periodic.

1. Introduction. An element x is said to have trivial centralizer in the group G if $\langle x, y \rangle$ is cyclic for each $y \in c_G x$. An element $x \in G$ is self-centralizing in G if $c_G x = \langle x \rangle$. Clearly self-centralizing elements have trivial centralizer but the converse is not true. The existence of a self-centralizing element x has a profound effect on the structure of the group. For example, if x is self-centralizing in G then the center of G is cyclic since $Z_1G \subseteq c_G x = \langle x \rangle$, and there are other less obvious relations between some of the invariants of the group [1], [2], [3]. In many cases, G is generated by the set S_G of all self-centralizing elements or the set S_G of all elements with trivial centralizer in S_G . For the particular case of restricted wreath products Seksenbaev [5] has given some necessary and some sufficient conditions for $S_G \subseteq G$ and $S_G \subseteq G$, mainly for finite $S_G \subseteq G$ and $S_G \subseteq G$ are wreath product $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and $S_G \subseteq G$ are considered by the set $S_G \subseteq G$ and S

THEOREM 2. Define $P_H = \langle xy \mid x, y \in S_H \rangle$ for any group H. If A and B are p-groups, B cyclic and $S_A \neq \emptyset$ then

- (a) $G/\langle S_G \rangle \cong A/A'P_A$.
- (b) $|G:P_G| = 2|A:A'P_A|$ for p = 2.

Presented to the Society, January 25, 1969; received by the editors August 18, 1969. AMS Subject Classifications, Primary 2052, 2054; Secondary 2040.

Key Words and Phrases. Wreath products, self-centralizing element, element with trivial centralizer, anticenter, p-group.

⁽¹⁾ Research of this author supported in part by a University of Cincinnati Faculty Fellowship.

(c) Suppose $B_i \neq 1$ are cyclic p-groups and let $A_1 = A$, $A_{i+1} = A_i$ wr B_i , $W = A_{k+1}$. Then

$$|W:P_W|=2^k|A:A'P_A|$$
 for $p=2$ and $W/\langle S_W\rangle\cong A/A'\langle S_A\rangle$ for $p\neq 2$.

THEOREM 3. Let B^* be the subgroup generated by the elements of infinite order in B and let \overline{A} be the base group of G = A wr B. If B is not a torsion group then $\langle S_G \rangle = \overline{A}B^*$.

2. **Definitions and notations.** Throughout this paper we will always assume that $A \neq 1$, $B \neq 1$ and G = A wr B. Our notation for the standard wreath product essentially follows [4]. Let F be the group of all functions on B with values in A and define $f^b \in F$ for $b \in B$ and $f \in F$ by $f^b(x) = f(xb^{-1})$ for all $x \in B$. The unrestricted wreath product A Wr B is the semidirect product FB. The support of $f \in F$ is the set of all $x \in B$ with $f(x) \neq 1$. For a subgroup H of A we define

$$\overline{H} = \{ f \in F \mid f(x) \in H \text{ for all } x \in B \text{ and } f \text{ has finite support} \}.$$

The restricted wreath product A wr B is the semidirect product $\overline{A}B$. The natural homomorphism of A wr B onto A wr $B/\overline{A} \cong B$ is denoted by μ . For each $a \in A$ we define a function $\gamma_a \in \overline{A}$ by $\gamma_a(1) = a$ and $\gamma_a(x) = 1$ for all $x \neq 1$ in B. The mapping $\gamma: a \to \gamma_a$ is then an isomorphic embedding of A in \overline{A} and A wr B is generated by A^{γ} and B.

For a given element $bf \in A$ wr B with $b \in B$ and $f \in \overline{A}$ we define an element $h_x \in A$ for each $x \in B$ by

$$h_x = \prod_{i=-\infty}^{+\infty} f(xb^i)$$
 if b has infinite order,

$$h_x = f(xb)f(xb^2)\cdots f(xb^{|b|})$$
 if b has finite order.

For any integer i we have $(bf)^i = b^i \cdot f^{b^{i-1}} \cdot \cdot \cdot f$. In particular, if b has finite order let $d = (bf)^{|b|} \in \overline{A}$. Then

$$d(x) = f(xb^{1-|b|}) \cdot \cdot \cdot f(x) = h_x$$
 for all $x \in B$.

3. Some preliminary results. In the following lemma some useful information about elements commuting with a fixed element $bf \in G = A$ wr B is collected.

LEMMA 1. Let b, $c \in B$ and g, $f \in \overline{A}$. Denote by T a left transversal of $\langle b \rangle$ in B.

- (i) [cg, bf] = 1 if and only if $g = f^{-c}g^bf$ and [c, b] = 1.
- (ii) If b has infinite order then [g, bf] = 1 implies g = 1.
- (iii) Suppose b has infinite order and $c \in c_B b$. There exists an element $g \in \overline{A}$ such that $[c^{-1}g, bf] = 1$ if and only if $h_{tc} = h_t$ for all $t \in T$.
- (iv) Assume b has finite order. For any $a \in c_A h_t$ and $t \in T$ define $g_t \in \overline{A}$ inductively by

$$g_t(t) = a,$$

$$g_t(tb^i) = g_t(tb^{i-1})^{f(tb^i)} \quad \text{for } 0 < i < |b|,$$

$$g_t(x) = 1 \quad \text{for } x \notin t \langle b \rangle.$$

Then $[g_t, bf] = 1$.

- (v) If $h_t = 1$ for all $t \in T$ then bf and b are conjugate.
- (vi) Assume $g, g^* \in \overline{A}$ commute with bf, b has finite order and $g(t) = g^*(t)^{\delta}$ for some integer δ . Then $g(x) = g^*(x)^{\delta}$ for all $x \in t \langle b \rangle$.

REMARK 1. For later applications in §5 it should be noted that (i), (iv) and (v) provided b has finite order hold also in the unrestricted wreath product X = A Wr B.

Proof. (i) $1 = [cg, bf] \equiv [c, b] \mod \overline{A}$ and $B \cap \overline{A} = 1$ imply [c, b] = 1. Hence

$$1 = [cg, bf] = g^{-1}c^{-1}f^{-1}b^{-1}cgbf = g^{-1}c^{-1}f^{-1}cb^{-1}gbf = g^{-1}f^{-c}g^{b}f.$$

Conversely if [c, b] = 1 and $g = f^{-c}g^bf$ then $[cg, bf] = g^{-1}f^{-c}g^bf = g^{-1}g = 1$.

- (ii) If [g, bf]=1 then by (i), $g(x)=f^{-1}(x)g(xb^{-1})f(x)$ and by iteration g(x) is conjugate to $g(xb^i)$ for all $x \in B$ and all integers i. Since g has finite support there is some x_t in each coset $t\langle b \rangle$ such that $g(x_t)=1$ hence g=1.
- (iii) Suppose there is some $g \in A$ such that $[c^{-1}g, bf] = 1$. From (i) we have $g(x) = f^{-1}(xc)g(xb^{-1})f(x)$ for all $x \in B$ hence by iteration for all $t \in T$ and all integers j > 0

$$g(tb^{j}) = f^{-1}(tb^{j}c) \cdots f^{-1}(tb^{-j+1}c)g(tb^{-j})f(b^{-j+1}) \cdots f(tb^{j}).$$

Since g and f have finite support and b has infinite order there exists an integer $N \ge 0$ such that $1 = f(tb^j) = f(tb^j) = g(tb^j)$ for all $t \in T$ and all j with $|j| \ge N$. Thus if $c \in c_B b$ we have

$$1 = g(tb^{N}) = f^{-1}(tcb^{N}) \cdots f^{-1}(tcb^{-N+1})g(tb^{-N})f(tb^{-N+1}) \cdots f(tb^{N})$$

= $h_{tc}^{-1}h_{t}$ for all $t \in T$.

Conversely assume $h_{tc} = h_t$ for all $t \in T$ and let $N \ge 0$ be an integer such that $f(tb^j) = f(tb^jc) = 1$ for all $t \in T$ and all j with $|j| \ge N$. Define a function $g: B \to A$ inductively by

$$g(tb^{-j}) = 1$$
 for all $t \in T$ and all $j \ge N$,
 $g(tb^{i}) = f^{-1}(tb^{i}c)g(tb^{i-1})f(tb^{i})$ for $i > -N$.

By construction we have $g(x)=f^{-1}(xc)g(xb^{-1})f(x)$ for all $x \in B$ and [c, b]=1 by assumption, hence $[c^{-1}g, bf]=1$ by (i). To show $g \in \overline{A}$ observe that for $j \ge N$ we have $g(tb^j)=g(tb^N)=h_{tc}^{-1}g(tb^{-N})h_t=h_{tc}^{-1}h_t=1$. Further

$$S = \{t \mid t \in T \text{ and } f(z) \neq 1 \text{ for some } z \in t \langle b \rangle \}$$

and

$$S^* = \{t \mid t \in T \text{ and } f(z) \neq 1 \text{ for some } z \in tc\langle b \rangle \}$$

are finite sets since $f(z) \neq 1$ for only finitely many $z \in B$ and Tc is also a left transversal of $\langle b \rangle$ in B if [c, b] = 1. Thus g(z) = 1 unless z belongs to the finite set of elements of the form

$$sb^{j}$$
 $(s \in S; |j| \le N), \quad s^{*}b^{j}$ $(s^{*} \in S^{*}; |j| \le N).$

This proves $g \in \overline{A}$ and hence (iii).

(iv) By (i) we have to prove $g_i(x) = f^{-1}(x)g_i(xb^{-1})f(x)$ for all $x \in B$. This is immediate from the definition for $x \notin t \langle b \rangle$ and $x = tb^t$ with 0 < i < |b|. For $x = t = tb^{|b|}$ we have inductively

$$f^{-1}(tb^{|b|})g_t(tb^{|b|-1})f(tb^{|b|}) = \cdots = g_t(t)^{f(tb)\cdots f(tb^{|b|})}$$

= $g_t(t)^{h_t} = g_t(t),$

since $g_t(t) = a \in c_A h_t$. Thus $g_t(x) = f^{-1}(x)g_t(xb^{-1})f(x)$ for all $x \in B$.

(v) If b=1 then $1=h_t=f(t)$ for all $t \in T$, hence f=1 and 1=bf=f. Hence we may assume $b \ne 1$ and if b has finite order define $k \in \overline{A}$ inductively for all $t \in T$ by

$$k(t) = 1,$$

 $k(tb^{i}) = f^{-1}(tb^{i})k(tb^{i-1})$ for $0 < i < |b|$.

Then $(k^{-b}fk)(tb^i) = k^{-1}(tb^{i-1})f(tb^i)k(tb^i) = 1$ for 0 < i < |b|. Further for $t = tb^{|b|}$ we have $(k^{-b}fk)(t) = k^{-1}(tb^{|b|-1})f(t)k(t) = k^{-1}(tb^{|b|-1})f(t)$ and $k(tb^{|b|-1}) = f^{-1}(tb^{|b|-1})$ $\cdots f^{-1}(tb)k(t)$. Hence $(k^{-b}fk)(t) = h_t = 1$ and $k^{-b}fk = 1$.

If b has infinite order there is some N such that $f(tb^i)=1$ for all $t \in T$ and all integers $|i| \ge N$. Defining $k \in \overline{A}$ by $k(tb^{-i})=1$ for $i \ge N$ and

$$k(tb^i) = f^{-1}(tb^i)k(tb^{i-1})$$

for i > -N we will have $k(tb^i) = f^{-1}(tb^i) \cdots f^{-1}(tb^{-N})$, hence for all i > N

$$k(tb^{t}) = k(tb^{N+1}) = (f(tb^{-N}) \cdot \cdot \cdot f(tb^{N}))^{-1} = h_t^{-1} = 1.$$

This proves $k \in \overline{A}$ and $k(tb^i) = f^{-1}(tb^i)k(tb^{i-1})$ for all i, and hence $(k^{-b}fk)(tb^i) = k^{-1}(tb^{i-1})f(tb^i)k(tb^i) = 1$ for all integers i and all $t \in T$.

We have now $k^{-b}fk=1$ in both cases, and

$$b = (k^{-b}fk)b = b^{-1}k^{-1}bfkb = (bf)^{kb}$$

shows that b and bf are conjugate in G.

(vi) From Lemma 1(i) we get

$$g(x) = f^{-1}(x)g(xb^{-1})f(x)$$
 and $g^*(x) = f^{-1}(x)g^*(xb^{-1})f(x)$

and inductively that for each $x \in t \langle b \rangle$ there is some $a \in A$ such that $g(x) = g(t)^a$, $g^*(x) = g^*(t)^a$. Hence $g(x) = g(t)^a = g^*(t)^{\delta a} = (g^*(t)^a)^{\delta} = g^*(x)^{\delta}$.

- LEMMA 2. (a) A finite abelian group $H = \langle a_1, \ldots, a_k, w \rangle$ is cyclic if $\langle a_i, w \rangle$ is cyclic for $i = 1, \ldots, k$ and $(|a_i|, |a_j|) = 1$ for all $i \neq j$.
- (b) The finite abelian group $H = \langle u, v \rangle$ is cyclic provided one of the following conditions is satisfied:
 - (i) H has a subgroup W such that H/W is cyclic and (|u|, |W|) = 1.
 - (ii) There is some integer $\alpha \neq 0$ such that $\langle u^{\alpha}, v \rangle$ is cyclic and $(|H/\langle u \rangle|, \alpha) = 1$.
- (c) The abelian group $H = \langle u, v \rangle$ with $u \neq 1$, $v \neq 1$ is cyclic if and only if there exist integers α , γ with $(\alpha, \gamma) = 1$ and $u^{\alpha} = v^{\gamma}$.

- **Proof.** (a) follows immediately from the main theorem for finite abelian groups. We note also the following consequence of the main theorem: if m and n are integers with (m, n) = 1 then G is cyclic if and only if $G^m = \langle g^m \mid g \in G \rangle$ and $G^n = \langle g^n \mid g \in G \rangle$ are cyclic. Apply with m = |W|, n = |u| for (i), with $m = |H/\langle u \rangle|$, $n = \alpha$ for (ii) and with $m = \alpha$, $n = \gamma$ for (c). For the converse in (c) let $H = \langle w \rangle$, $u = w^{\sigma}$, $v = w^{\tau}$ and ω the least common multiple of σ and τ . Then $\omega = \sigma \lambda = \tau \mu$ with $(\lambda, \mu) = 1$ and $u^{\lambda} = w^{\omega} = v^{\mu}$.
- LEMMA 3. Let $g, f \in \overline{A}$, $1 \neq b \in B$ and $g \neq 1$. If $\langle g, bf \rangle$ is cyclic then b has finite order and there are integers α , β with $(\alpha, |b|\beta) = 1$ and $g^{\alpha} = d^{\beta}$, where $d = (bf)^{|b|}$.
- **Proof.** By Lemma 2(c) there are integers α , γ with $(\alpha, \gamma) = 1$ and $g^{\alpha} = (bf)^{\gamma}$. Since $g \in \overline{A}$ and $\langle b \rangle \cap \overline{A} = 1$ this implies that b has finite order and |b| divides γ , hence $\gamma = |b|\beta$.
 - 4. Determination of S_G and R_G . We now state and prove

THEOREM 1. Let $f \in \overline{A}$ and $b \in B$ such that $bf \neq 1$ and let T be a left transversal of $\langle b \rangle$ in B.

- (a) The element bf has trivial centralizer in G = A wr B if and only if one of the following conditions is satisfied:
 - (1.1) b has infinite order.
- (1) (1.2) For each element $c \in c_B b$ satisfying $h_{tc} = h_t$ for all $t \in T$ the subgroup $\langle c, b \rangle$ is cyclic.
 - (2.1) b has finite order.
 - (2.2) $h_t = 1 \text{ for all } t \in T$.
- (2) $(2.3) \ b \neq 1 \ has \ trivial \ centralizer \ in \ B.$
 - (2.4) A is periodic and elements in A have order prime to |b|.
 - (3.1) b has finite order.
 - (3.2) $h_t \neq 1$ has trivial centralizer in A for all $t \in T$.
- (3) (3.3) $c_A h_t / \langle h_t \rangle$ is a p'-group for all primes p dividing |b|.
 - (3.4) If $B \neq \langle b \rangle$, then $c_A h_t$ is periodic for all $t \in T$ and $(|h_s|, |y|) = 1$ for all $s \neq t$ in T and all $y \in c_A h_t$.
- (b) The element bf is self-centralizing in G if and only if one of the following conditions is satisfied:
 - (4.1) b has infinite order.
- (4) $(4.2) c \in \langle b \rangle \text{ if and only if } c \in c_B b \text{ and } h_{tc} = h_t \text{ for all } t \in T.$
 - (5.1) b has finite order.
 - (5.2) h_t is self-centralizing in A for all $t \in T$.
- (5) (5.2) If $B \neq \langle b \rangle$, then h_t has finite order for all $t \in T$ and $(|h_s|, |h_t|) = 1$ for all $s \neq t$ in T.

REMARK 2. It should be noted that in cases (3) and (5) the group B is actually finite. Indeed, since f has finite support only finitely many $h_t = f(tb) \cdots f(tb^{|b|})$ are nontrivial, hence (3.2) or (5.2) imply that T and hence B is finite.

Proof. (1) Suppose bf has trivial centralizer, b has infinite order and $c \in c_B b$ satisfies $h_{tc} = h_t$ for all $t \in T$. From Lemma 1(iii) follows the existence of some $g \in \overline{A}$ such that $[c^{-1}g, bf] = 1$ and $bf \in R_G$ implies $\langle c^{-1}g, bf \rangle$ is cyclic. Let $H = \langle c, b \rangle$. Then $H^{\mu} = \langle c^{-1}g, bf \rangle^{\mu}$ is cyclic and $H^{\mu} = H\overline{A}/\overline{A} \cong H/H \cap \overline{A}$. But $H \cap \overline{A} \subseteq B \cap \overline{A} = 1$ so $H \cong H^{\mu}$ is cyclic.

Conversely suppose b and f satisfy conditions (1.1) and (1.2) and $w \in G$ commutes with bf, where $w = c^{-1}k$ for some $c \in B$ and $k \in \overline{A}$. Lemma 1(i) gives $c \in c_B b$ and $h_{tc} = h_t$ for all $t \in T$ from Lemma 1(iii), hence $\langle c, b \rangle$ is cyclic by (1.2). Let $K = \langle c^{-1}k, bf \rangle$. Then $K^{\mu} = \langle c, b \rangle^{\mu}$ is cyclic and $K^{\mu} = K\overline{A}/\overline{A} \cong K/K \cap \overline{A}$. But [g, bf] = 1 for all $g \in K \cap \overline{A}$ since K is abelian and so from Lemma 1(ii) we have $K \cap \overline{A} = 1$. Hence $K \cong K^{\mu}$ is cyclic.

(2) Suppose b has finite order and $h_t = 1$ for all $t \in T$. By assumption $bf \neq 1$. Then $b \neq 1$ since b = 1 implies $f(t) = h_t = 1$ for all $t \in T$, hence f = 1 = bf. To prove (2.3) observe that b is conjugate to $bf \in R_G$ by Lemma 1(v) and hence $b \in B \cap R_G \subseteq R_B$.

Finally for (2.4) let $a \in A$ and for each $t \in T$ define $k_t \in \overline{A}$ by

$$k_t(x) = a$$
 for $x \in t\langle b \rangle$, $k_t(x) = 1$ for $x \notin t\langle b \rangle$.

Then $[k_t, b] = 1$ by construction and $b \in R_G$ implies $\langle k_t, b \rangle$ cyclic. Hence k_t and a have finite order since $b \neq 1$ has finite order. If r = (|a|, |b|) then $r = (|k_t|, |b|)$ and there are subgroups of order r in $\langle k_t, b \rangle$, $\langle k_t \rangle$ and $\langle b \rangle$. But there is only one subgroup H of order r in $\langle k_t, b \rangle$ since $\langle k_t, b \rangle$ is cyclic hence $H \subseteq \langle k_t \rangle \cap \langle b \rangle$ $\subseteq \overline{A} \cap B = 1$. This proves 1 = r = (|a|, |b|) and thus (2.4).

Conversely assume conditions (2) are satisfied. Since b and bf are conjugate by (2.2) and Lemma 1(v) it is sufficient to show $b \in R_G$. Let $g \in \overline{A}$ and $c \in B$ be such that [cg, b] = 1. Then [g, b] = 1 = [c, b] by Lemma 1(i) and $\langle c, b \rangle$ is a finite cyclic group by (2.3) and (2.1). Hence if $K = \langle cg, b \rangle$ then $K/K \cap \overline{A} \cong K\overline{A}/\overline{A} = K^{\mu} = \langle c, b \rangle^{\mu}$ is finite cyclic, $K \cap \overline{A}$ is finite abelian by (2.4) and $(|K \cap \overline{A}|, |b|) = 1$ by (2.4). Thus K is finite and Lemma 2(i) shows K cyclic.

(3) Assume b has finite order and $h_t \neq 1$ for some $t \in T$. Suppose $h_s = 1$ for some $s \in T$. Then $s \neq t$ and $h_t \in c_A h_s = A$. Define $g_s \in \overline{A}$ as in Lemma 1(iv) with $g_s(s) = h_t$. Then $\langle g_s, bf \rangle$ is abelian, hence cyclic and $g_s^{\alpha} = d^{\beta}$ with $(\alpha, \beta) = 1$ by Lemma 3. This gives $h_t^{\alpha} = 1$ for the argument s and $1 = h_t^{\beta}$ for the argument t, a contradiction since $(\alpha, \beta) = 1$ and $h_t \neq 1$.

To prove (3.2) let $a \in c_A h_t$ and define $g_t \in \overline{A}$ as in Lemma 1(iv) such that $g_t(t) = a$. Then $[bf, g_t] = 1$ and $\langle bf, g_t \rangle$ is cyclic since $bf \in R_G$. Hence also the subgroup $H = \langle d, g_t \rangle$ is cyclic, $H = \langle h \rangle$ with $h \in \overline{A}$, $d = h^i$ and $g_t = h^j$. So $h_t = d(t) = h(t)^i$, $a = g_t(t) = h(t)^j$ which proves that $\langle h_t, a \rangle$ is cyclic for all $a \in c_A h_t$.

To prove (3.3) we may assume $b \neq 1$ since the condition is vacuous for b = 1.

Defining $g_t \in \overline{A}$ as in Lemma 1(iv) for $1 \neq a \in c_A h_t$ with $g_t(t) = a$ we have $[g_t, bf] = 1$ and hence $\langle g_t, bf \rangle$ is cyclic. From Lemma 3 we obtain $g_t^{\alpha} = d^{\beta}$ with $(\alpha, |b|\beta) = 1$. For the argument t this gives $a^{\alpha} \in \langle h_t \rangle$, hence $c_A h_t / \langle h_t \rangle$ is periodic and $(\alpha, |b|) = 1$ proves (3.3).

Finally for (3.4) assume $B \neq \langle b \rangle$ and let $1 \neq y \in c_A h_t$. Define $1 \neq g_t \in \overline{A}$ as in Lemma 1(iv) with $g_t(t) = y$. Then $\langle g_t, bf \rangle$ is abelian, hence cyclic, and $g_t^{\alpha} = d^{\beta}$ with $(\alpha, \beta) = 1$ by Lemma 3. For the argument $s \neq t$ this gives $1 = h_s^{\beta}$, hence h_s has finite order for all $s \in T$. For the argument t we get $y^{\alpha} = h_t^{\beta}$. Since $(\alpha - \beta, \beta) = 1$ this implies $(|h_s|, |h_t|) = 1$ for $y = h_t \in c_A h_t$. But |y| divides $\alpha |h_t|$ for all $y \in c_A h_t$, hence $(|h_s|, |y|)$ divides $(|h_s|, |a|h_t|) = (\beta, \alpha) = 1$.

Conversely assume that conditions (3) are satisfied, let $cg \in c_G(bf)$ and suppose $c \notin \langle b \rangle$. Then also [cg, d] = 1 where $d = (bf)^{|b|}$, and Lemma 1(i) gives $d = g^{-1}d^cg$ hence $d(x) = d(xc^{-1})^{g(x)}$ for all $x \in B$. Since [d, bf] = 1 we have also

$$d(x) = d(xb^{-1})^{f(x)}$$
 for all $x \in B$,

so $d(xc^{-1})$ is conjugate to d(z) for each $z \in x\langle b \rangle$. Let $tc^{-1} = sb^{\beta}$ with $s \in T$ and an integer β . Then $h_s = d(s)$ and $h_t = d(t)$ are conjugate, so (3.4) implies s = t, hence $c \in \langle b \rangle$, say $c = b^t$ for some integer i. Since $cg(bf)^{-1} \in \overline{A}$ and $\langle cg(bf)^{-1}, bf \rangle = \langle cg, bf \rangle$ we see that in order to prove that bf has trivial centralizer in G it suffices to show that $\langle g, bf \rangle$ is cyclic for each $g \in \overline{A}$ with [g, bf] = 1. Lemma 2(ii) with u = bf, v = g, $\alpha = |b|$ and $d = u^{\alpha}$ gives just that provided that we can show

(a) $\langle d, g \rangle$ is cyclic;

(b) $\langle bf, g \rangle / \langle bf \rangle$ is a p'-group for all primes p dividing |b|.

Since $\langle bf \rangle \cap \overline{A} = \langle (bf)^{|b|} \rangle = \langle d \rangle$ then

$$\langle bf \rangle \cap \langle g \rangle = \langle bf \rangle \cap \langle \overline{A} \rangle \cap \langle g \rangle = \langle d \rangle \cap \langle g \rangle.$$

Then

$$\langle bf, g \rangle / \langle bf \rangle \cong \langle g \rangle / \langle bf \rangle \cap \langle g \rangle = \langle g \rangle / \langle d \rangle \cap \langle g \rangle$$

shows that (b) can be replaced by

(b*) $\langle g \rangle / \langle d \rangle \cap \langle g \rangle$ is a p'-group for each prime p dividing |b|.

To show (a) assume first $B = \langle b \rangle$. Then $d(t) = h_t$ and (3.2) gives $\langle d(t), g(t) \rangle$ is cyclic, say $k_t = d(t)^{\alpha}g(t)^{\beta}$, $d(t) = k_t^i$ and $g(t) = k_t^j$ with integers α , β , i, j and $k_t \in A$. Let $k = d^{\alpha}g^{\beta} \in \overline{A}$ and observe that d, g and k commute with bf. From Lemma 1(vi) we get $d = k^i$ and $g = k^j$, so $\langle d, g \rangle = \langle k \rangle$ is cyclic.

For $B \neq \langle b \rangle$ the elements h_s , g(s) have finite order for all $s \in T$ by (3.4). Since g commutes with bf we have from Lemma 1(i) that g(s) and g(x) are conjugate if $x \in s\langle b \rangle$. For each $t \in T$ define $d_t \in \overline{A}$ by $d_t(x) = d(x)$ for $x \in t\langle b \rangle$, d(x) = 1 for $x \notin t\langle b \rangle$. Then d_t commutes with d_s , g and bf, only finitely many d_t are nontrivial and d is the product of all d_t . Let Π be the set of all primes dividing $|h_t|$ and decompose $\langle g \rangle = \langle m \rangle \times \langle n \rangle$ with m, $n \in \overline{A}$ such that $\langle m \rangle$ is a Π -group and $\langle n \rangle$ is a Π -group. Since $(|g(s)|, |h_t|) = 1$ by (3.4) for $s \neq t$ and |g(x)| = |g(s)| for $x \in s\langle b \rangle$

it follows that m(x) = 1 for $x \notin t\langle b \rangle$. By (3.2) the abelian group $\langle m(t), d_t(t) \rangle = \langle g(t), h_t \rangle$ is cyclic, say $\langle m(t), d_t(t) \rangle = \langle k_t \rangle$ with $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k = m^{\alpha} d_t^{\beta}$, and observe that $m \in \langle g \rangle$, d_t and k commute with $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and observe that $k_t = m(t)^{\alpha} d_t(t)^{\beta}$, is a cyclic $k_t = m^{\alpha} d_t^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and $k_t = m(t)^{\alpha} d_t^{\beta}$, is a cyclic $k_t = m^{\alpha} d_t^{\beta}$, and $k_t = m^{\alpha} d_t^{\beta}$, is a cyclic $k_t = m^{\alpha} d_t^{\beta}$. Let $k_t = m^{\alpha} d_t^{\beta}$, and $k_t = m^{\alpha} d_t^{\beta}$

To show (b*) assume first $B = \langle b \rangle$ and p divides |b|. Then by (3.3) there is some integer i such that (p, i) = 1 and $g(t)^i \in \langle h_t \rangle$, say $g(t)^i = d(t)^j$. But Lemma 1(vi) gives $g(x)^i = d(x)^j$ for all $x \in B$ so $g^i \in \langle d \rangle \cap \langle g \rangle$.

If $B \neq \langle b \rangle$, then $c_A h_t$ is periodic for all $t \in T$ by (3.4). Suppose there is some prime p dividing |b| and some $k \in \langle g \rangle$ such that $k^p \in \langle d \rangle$. In particular $k(t) \in \langle h_t \rangle$ for all $t \in T$ by (3.3), say $k(t) = h_t^{\alpha_t}$ with integers α_t . Now $(|h_s|, |h_t|) = 1$ for $s \neq t$ in T by (3.4), and the Chinese remainder theorem gives the existence of an integer α such that

$$\alpha \equiv \alpha_t \mod |h_t|$$
 for all $t \in T$.

Finally $d(t) = h_t$, so Lemma 1(vi) shows $k(x) = d(x)^{\alpha}$ for all $x \in B$. Hence there is no element of order p in $\langle g \rangle / \langle d \rangle \cap \langle g \rangle$, which proves (b*).

(4) Assume now that bf is a self-centralizing element in G and b has infinite order. If $c \in \langle b \rangle$ then $c \in c_B b$ and clearly $h_{xc} = h_x$ for all $x \in B$. Assume $c \in c_B b$ satisfies $h_{tc} = h_t$ for all $t \in T$. There exists $g \in \overline{A}$ by Lemma 1(iii) such that $[c^{-1}g, bf] = 1$ hence $c^{-1}g \in \langle bf \rangle$ since bf is self-centralizing. If $c^{-1}g = (bf)^i$ then in particular $c^{-1} = b^i$ so b is self-centralizing.

Conversely, assume (4.1) and (4.2) are satisfied and there are $c \in B$ and $g \in \overline{A}$ such that $[c^{-1}g, bf] = 1$. Then [c, b] = 1 from Lemma 1(i) and Lemma 1(ii) together with (4.2) implies $c = b^j$ with some integer j. But $k = (bf)^{-j}(c^{-1}g) \in \overline{A}$ commutes with bf, hence k = 1 by Lemma 1(ii) and so $c^{-1}g \in \langle bf \rangle$.

(5) Suppose b has finite order and let $a \in c_A h_a$. Define g_t as in Lemma 1(iv) with $g_t(t) = a$. Then $[g_t, bf] = 1$ and by assumption $g_t = (bf)^i$ with some integer i. But $g_t \in \overline{A}$ implies that |b| divides i so i = |b|j and $(bf)^i = (bf)^{|b|j} = d^j$. Hence $a = g_t(t) = d(t)^j = h_t^j$ which proves (5.2).

Since a self-centralizing element has trivial centralizer we may apply the results of (2) and (3) to prove (5.3). We have $c_A h_t = \langle h_t \rangle$ by (5.2) hence, $h_t \neq 1$ for all $t \in T$ and condition (3.4) gives (5.3).

Conversely, assume (5) is satisfied, cg commutes with bf and $c \notin \langle b \rangle$. Then $d=(bf)^{|b|}$ commutes with cg and bf so Lemma 1(i) implies

$$d = f^{-1}d^b f$$
 and $d = g^{-1}d^c g$.

In particular, if $tc^{-1} = sb^{\beta}$ with $s \in T$ and an integer β , then $h_t = d(t)$ is conjugate to $d(s) = h_s$ and hence s = t by (5.3). But then $c = b^{-\beta} \in \langle b \rangle$, a contradiction. Thus $c \in \langle b \rangle$, say $c = b^i$ and $k = (bf)^{-i}(cg) \in \overline{A}$ commutes with bf and d. Since $d(t) = h_t$ is self-centralizing by (5.2) there is an integer α_t for each $t \in T$ such that $k(t) = d(t)^{\alpha_t}$.

From (5.3) we have (|d(s)|, |d(t)|) = 1 for $s \neq t$ in T, so by the Chinese remainder theorem there is an integer α with

$$\alpha \equiv \alpha_t \mod |d(t)|$$
 for all $t \in T$.

Then $k(t) = d(t)^{\alpha}$ for all $t \in T$ and Lemma 1(vi) implies $k(x) = d(x)^{\alpha}$ for all $x \in B$. Hence $k \in \langle d \rangle \subseteq \langle bf \rangle$, and bf is self-centralizing.

COROLLARY 1. If B is a p-group and A is torsion-free or a p-group then $1 \neq bf \in R_G$ with $b \in B$ and $f \in \overline{A}$ implies $B = \langle b \rangle$.

Proof. Since B is periodic we have only to consider conditions (2) and (3). Further under our hypothesis it is impossible to satisfy condition (2.4). Hence from (3.2) we get $h_t \neq 1$ for all $t \in T$. Thus $(|h_s|, |h_t|) \neq 1$ if A is a p-group, and hence $B = \langle b \rangle$ by (3.4). If A is torsion-free we observe that $1 \neq h_t \in c_A h_t$, hence $1 \neq c_A h_t \subseteq A$ is not periodic and $B = \langle b \rangle$ follows again from (3.4). For later applications we note the following

COROLLARY 2. If A and B are p-groups then $bf \in S_G$ if and only if $B = \langle b \rangle$ and $h_1 \in S_A$.

COROLLARY 3. If A and B are p-groups then

- (i) $\{1\} \cup S_G = R_G$.
- (ii) $S_G \neq \emptyset$ if and only if B is cyclic and $S_A \neq \emptyset$.
- **Proof.** (i) Clearly $\{1\} \cup S_G \subseteq R_G$. So let $1 \neq bf \in R_G$. From Corollary 1 we have $B = \langle b \rangle$, hence $b \neq 1$ and from (3.3) we see $c_A h_t = \langle h_t \rangle$. Thus condition (5) is satisfied for bf and hence $bf \in S_G$.
- (ii) Suppose $S_G \neq \emptyset$ and $bf \in S_G$. Then $B = \langle b \rangle$ and $S_A \neq \emptyset$ since $h_1 \in S_A$ by Corollary 2. Conversely assume $B = \langle b \rangle$, $a \in S_A$ and let $f = \gamma_a$. Then

$$h_1 = f(b) \cdot \cdot \cdot f(b^{|b|}) = a \in S_A,$$

and $bf \in S_G$ by Corollary 2, hence $S_G \neq \emptyset$.

5. The size of S_G and P_G . We introduce a new characteristic subgroup P_H which will be useful to compute S_G if G is an iterated wreath product.

DEFINITION. $P_H = \langle xy \mid x, y \in S_H \rangle$.

By definition $P_H \subseteq \langle S_H \rangle$, and if H is a p-group, $p \neq 2$ then $\langle x \rangle = \langle x^2 \rangle$ shows $P_H = \langle S_H \rangle$. The generalized quaternion groups are examples for $P_H = \langle S_H \rangle$, while for the dihedral groups of 2-power order $P_H \neq \langle S_H \rangle$.

LEMMA 4. Suppose A and $B = \langle b \rangle$ are p-groups and $S_A \neq \emptyset$. Then

- (i) $G' \subseteq P_G$.
- (ii) $(A'P_A)^{\gamma} = A^{\gamma} \cap P_G = A^{\gamma} \cap \langle S_G \rangle$.

Proof. (i) Let $u, v, w \in A$, uw = 1 and $1 \neq c \in B = \langle b \rangle$. If $a \in S_A$ then $\gamma_u \gamma_{wa}^c b \in S_G$ by Corollary 2, hence

$$\gamma_u \gamma_w^c = \gamma_u \gamma_{wa}^c (\gamma_a^c)^{-1} = (\gamma_u \gamma_{wa}^c b) (\gamma_a^c b)^{-1} \in P_G.$$

But the elements $\gamma_u \gamma_w^c \subseteq P_G$ generate G' [4, Corollary 4.5, p. 350] hence $G' \subseteq P_G$.

(ii) If a_1 , $a_2 \in S_A$ then $a_1^{\gamma}b \in S_G$ and $(a_2^{-1})^{\gamma}b \in S_G$ by Corollary 2 thus $(a_1a_2)^{\gamma} = a_1^{\gamma}a_2^{\gamma} = a_1^{\gamma}b((a_2^{-1})^{\gamma}b)^{-1} \in P_G$ hence $P_A^{\gamma} \subseteq P_G$. Since $(A')^{\gamma} \subseteq G'$ and $G' \subseteq P_G$ by Lemma 4(i) we have $(A'P_A)^{\gamma} \subseteq A^{\gamma} \cap P_G$.

Conversely let $h \in A^{\gamma} \cap P_G$. Then

$$h = (b_1 f_1) \cdots (b_r f_r)$$
 where r is even,

 $B = \langle b_1 \rangle = \cdots = \langle b_r \rangle$ and $u_i = f_i(b_i) \cdots f_i(b_i^{|b|}) \in S_A$ by Corollary 2. Since

$$c'f_icf_{i+1} = c'cf_i^cf_{i+1}$$
 for every $c', c \in B$

and $h \in A^{\gamma} \subseteq \overline{A}$ we may rewrite

$$h=f_1^*\cdots f_r^*,$$

with f_i^* conjugate to f_i under B. In particular $f_i^*(b) \cdots f_i^*(b^{|b|}) \equiv f_i(b) \cdots f_i(b^{|b|}) \equiv u_i$ mod A'. Now $h(b) \cdots h(b^{|b|}) \equiv \prod_{i=1}^r (f_i^*(b) \cdots f_i^*(b^{|b|})) \equiv u_1 \cdots u_r$ mod A', and so $h(b) \cdots h(b^{|b|}) \in A'P_A$ since r is even. But $h \in A^r$ implies $h(b^i) = 1$ for 0 < i < |b|, so $h(1) = h(b^{|b|}) \in A'P_A$, or $h \in (A'P_A)^r$. This proves $(A'P_A)^r = A^r \cap P_G$.

For $p \neq 2$ we have $P_G = \langle S_G \rangle$. To prove $A^{\gamma} \cap P_G = A^{\gamma} \cap \langle S_G \rangle$ we may hence assume p = 2. Suppose $h \in A^{\gamma} \cap \langle S_G \rangle$. By Corollary 2

$$h=(b_1f_1)\cdots(b_rf_r),$$

with $b_i f_i \in S_G$, $B = \langle b \rangle = \langle b_1 \rangle = \cdots = \langle b_r \rangle$ and $f_i \in \overline{A}$. Since $h \in A^r \subseteq \overline{A}$ and $h \equiv b_1 \cdots b_r \mod \overline{A}$, we have $b_1 \cdots b_r \in \overline{A} \cap B = 1$. But $B = \langle b \rangle = \langle b_i \rangle$ and p = 2 imply that each b_i is an odd power of b, hence r is even because b has even order. Thus $h \in P_G$, which proves

$$A^{\gamma} \cap \langle S_G \rangle = A^{\gamma} \cap P_G$$

since trivially $P_G \subseteq \langle S_G \rangle$.

We can now prove Theorem 2 announced in the introduction.

Proof. (a) We first observe that $G = A^{\gamma} \langle S_G \rangle$ since $\langle A^{\gamma}, b \rangle = G$ and $\gamma_a b \in S_G$ by Corollary 2 for $B = \langle b \rangle$ and $a \in S_A$. Hence $G/\langle S_G \rangle \cong A^{\gamma}/A^{\gamma} \cap \langle S_G \rangle$, and $A^{\gamma} \cap \langle S_G \rangle = (A'P_A)^{\gamma}$ by Lemma 4(ii) implies

$$G/\langle S_G \rangle \cong A/A'P_A$$
.

(b) By Corollary 2 an element $x \in S_G$ has the form $x = b^*f$ with $f \in \overline{A}$ and $B = \langle b^* \rangle$ where b^* is an odd power of b. In particular $P_G \subseteq \overline{A} \langle b^2 \rangle$. But $\gamma_a b \in S_G$ for $a \in S_A$ so $b^2 \in \overline{A}P_G$. Hence $\overline{A}P_G = \overline{A} \langle b^2 \rangle$ and

$$|G:\overline{A}P_G| = |G:\overline{A}\langle b^2\rangle| = 2.$$

Further $A^{\gamma}P_G$ is normal in G since $G' \subseteq A^{\gamma}P_G$ by Lemma 4(i). But \overline{A} is generated by conjugates of A^{γ} , hence $\overline{A}P_G = A^{\gamma}P_G$ and $\overline{A}P_G/P_G = A^{\gamma}P_G/P_G \cong A^{\gamma}/A^{\gamma} \cap P_G \cong A/A'P_A$ by Lemma 4(ii). This proves

$$|G:P_G| = |G:\overline{A}|P_G| |\overline{A}P_G| P_G| = 2|A:A'P_A|.$$

(c) For k=1 this follows directly from (a) and (b). We proceed by induction on k. Let $V=A_{k+2}=W$ wr B_{k+1} . Then for p=2, $|V:P_V|=2|W:W'P_W|$ by (b) and $W'\subseteq P_W$ by Lemma 4(i). By induction $|W:P_W|=2^k|A:A'P_A|$ hence $|V:P_V|=2^{k+1}|A:A'P_A|$. For $p\neq 2$ we have $V/\langle S_V\rangle\cong W/W'P_W$ by (a), $P_W=\langle S_W\rangle$ and $W'\subseteq P_W$ by Lemma 4(i), hence $V/\langle S_V\rangle\cong W/\langle S_W\rangle$ and by induction

$$V/\langle S_v \rangle \cong W/\langle S_w \rangle \cong A/A'P_A$$
.

Proof of Theorem 3. Let b be an element of infinite order in B, $1 \neq a \in A$ and choose T so that $1 \in T$. We show first that if $f = \gamma_a$, then the element bf satisfies condition (4.2) of Theorem 1. Observe that

$$h_x = 1$$
 for $x \notin \langle b \rangle$,
 $h_x = a$ for $x \in \langle b \rangle$.

Hence $h_{tc} = h_t$ implies for t = 1 that $h_{tc} \neq 1$ and so $c \in \langle b \rangle$. This proves by Theorem 1(4) that $b\gamma_a \in S_G$ and a similar argument shows $b^2\gamma_a \in S_G$ hence both b and γ_a are contained in $\langle S_G \rangle$. But this implies $B^* \subseteq \langle S_G \rangle$ and $A^\gamma \subseteq \langle S_G \rangle$. Since \overline{A} is generated by the conjugates of A^γ and $\langle S_G \rangle$ is normal in G, we have $\overline{A}B^* \subseteq \langle S_G \rangle$.

On the other hand, if $bf \in S_G$ then $b \in B^*$ for otherwise b has finite order and Remark 2 implies B is finite which contradicts the assumption that B is not a torsion group. Thus $S_G \subseteq \overline{A}B^*$, hence $\langle S_G \rangle = \overline{A}B^*$.

6. Unrestricted wreath products. The characterization of self-centralizing elements and elements with trivial centralizer is much easier for the unrestricted wreath product as the following theorem shows. In particular if A and B are p-groups it suffices to consider the restricted wreath product.

THEOREM 4. Suppose B has infinite order and X = A Wr B is the unrestricted wreath product of A and B.

- (a) Let $b \in B$ and $f \in F$ such that $bf \neq 1$, and T a left transversal of $\langle b \rangle$ in B. Then bf has trivial centralizer in X if and only if the following conditions are satisfied:
 - (i) b has finite order.
 - (ii) $h_{\iota} = 1$ for all $t \in T$.
 - (iii) $b \neq 1$ has trivial centralizer in B.
 - (iv) A is periodic and elements in A have order prime to |b|.
 - (b) X has no self-centralizing elements.

Proof. (a) Suppose $bf \in R_X$. If b has infinite order, let $1 \neq a \in A$ and define $1 \neq g \in F$ by

$$g(1) = a$$
, $g(x) = g(xb^{-1})^{f(x)}$ for $x \in \langle b \rangle$

and g(x)=1 for $x \notin \langle b \rangle$. Then by construction $g^{bf}=g$, so that $\langle g, bf \rangle$ must be cyclic. This contradicts Lemma 3 and this proves (i).

Let $1 \neq a \in c_A h_t$ and define g_t as in Lemma 1(iv) with $g_t(t) = a$. Then $\langle g_t, bf \rangle$ is

cyclic and by Lemma 3 $g_t^{\alpha} = d^{\beta}$ with integers α , β such that $(\alpha, |b|\beta) = 1$. In particular

(*)
$$a^{\alpha} = h_t^{\beta}, \quad 1 = h_s^{\beta} \quad \text{for all } s \neq t \text{ in } T.$$

Hence h_s has finite order, $c_A h_t$ is periodic and there is some integer m > 0 such that $h_s^m = 1$ for all $s \in T$. With $a = h_t$ we see from (*) also that $(|h_s|, |h_t|) = 1$ since $(\alpha - \beta, \beta) = 1$. Since $h_s^m = 1$ for all $s \in T$ this implies that there exists some $t \in T$ with $h_t = 1$. Suppose $h_s \neq 1$ for some $s \in T$. Then for $a = h_s \in A = c_A h_t$ (*) implies $h_s^\alpha = 1$ and $1 = h_s^\beta$ a contradiction since $(\alpha, \beta) = 1$. This proves (ii).

To prove (iii) observe that bf and b are conjugate by (ii) and Lemma 1(v). In particular $b \neq 1$ and $b \in R_X \cap B \subseteq R_B$.

Finally from (ii) and (*) we get $a^{\alpha} = 1$ for $a \in c_A h_t = A$ with $(\alpha, |b|\beta) = 1$ which proves (iv).

The sufficiency of conditions (i) to (iv) follows as in the proof of Theorem 1(2).

(b) Since $S_x \subseteq R_X$ we get from condition (ii) of (a) that $h_t = 1$ for all $t \in T$. Then Lemma 1(v) implies that bf and b are conjugate, hence $b \in S_X$. Then for some $1 \neq a \in A$ define $k \in \overline{A} \subseteq F$ by k(x) = a for $x \in \langle b \rangle$ and k(x) = 1 for $x \notin \langle b \rangle$, and observe [k, b] = 1, but $\langle b \rangle \cap F \subseteq B \cap F = 1$.

COROLLARY 4. If A and B are p-groups then $R_x = \{1\} \cup S_x$.

REFERENCES

- 1. W. Kappe, On the anticenter of nilpotent groups, Illinois J. Math. 12 (1968), 603-609.
- 2. ——, Self-centralizing elements in regular p-groups, (to appear).
- 3. M. Konvisser, Metabelian p-groups which contain a self-centralizing element, Illinois J. Math. (to appear).
- 4. P. M. Neumann, On the structure of standard wreath products of groups Math. Z. 84 (1964), 343-373. MR 32 #5719.
- 5. K. Seksenbaev, On the anticenter of bundles of groups, Izv. Akad. Nauk Kazah. SSR Ser. Fiz.-Mat. Nauk 1966, no. 1, 20-24. (Russian) MR 34 #2671.

STATE UNIVERSITY OF NEW YORK,
BINGHAMTON, NEW YORK 13901
UNIVERSITY OF CINCINNATI,
CINCINNATI, OHIO 45221